

#2856

Submillimeter 7 Tesla fMRI in Primary Visual Cortex during monocular stimulation

Gilles de Hollander, Wietske van der Zwaag, Tomas Knapen

Laminar fMRI and perceptual decision-making

- Visual cortex shows well-defined functional organization at a (sub)-mil-limeter scale. For example, ocular dominance columns (ODCs; ~ 1mm in width) in primary visual cortex (V1).
- 7 Tesla fMRI could potentially resolve this organization in humans, in vivo .
- Here we present preliminary data using a paradigm using anaglyph glasses that allow for exclusive monocular visual stimulation to outline the ODCs in V1.
- This paradigm could potentially be used to further investigate various perceptual processes, for example binocular rivalry.

Binocular Random Dot Motion Task "red = right" (4 runs) Fixate (average .5 s) RDK (2 s) Feedback (.5 s) The state of the state of

• One subject, 8 runs of 5 minutes, containing 24s blocks of 5-6 trials

Coherence

- 500 trials in total
- 0.7 mm isotropic voxels, 3D EPI; TR 4 s; FOV 130x130x23.8 mm

EPI with opposite phase-encoding was used for B0 distortion correction

Freesurfer was used for fitting cortical surfaces at different pial distances

Draining vein dominance: signal increase towards outside layers

Support Vector Machine Can Decode Eye stimulation on block-by block basis

Monocular dominance voxels in V1 are noisy but consistent across runs

Evidence for consistency:

Z-values correlate across

Correlation is highest in "middle" (input) layers

odd and even runs

preference for left eye stimulation

preference for right eye stimulation

